
Journal of Statistical Physics, Vol. 84, Nos. 5/6, 1996 

Constrained Minima of Nonlocal Free Energy 
Functionals 

G. Bellettini, 1 M. Cassandro, 2 and E. Presutti 3 

Receit, ed July 6, 1995;final February 12. 1996 

We consider variational problems involving nonlocal free energy functionals 
that arise from Gibbs measures with Kac potentials and are related to the 
characterization of the optimal (i.e., typical) shape of an interface under given 
constraints on the magnetization profile. 
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1. I N T R O D U C T I O N  

This paper continues the analysis of the Gibbs measures with Kac poten- 
tials developed in refs. 2 and 1 by focusing on the structure of the interfaces 
in (d>~ 2)-dimensional systems. We refer to the companion paper I1~ for a 
general discussion on this issue in the framework of systems with Kac 
interactions. The main goal in ref. 1 was to compute the probability of 
observing a given interface in the scaling limit when the range of the Kac 
potential diverges. Here we do not fix the interface itself, but determine its 
optimal (i.e., typical) shape under imposed constraints on the magnetiza- 
tion profile. The best-known example (included in our analysis) is the con- 
straint that fixes the value of the total magnetization; the optimal shape is 
then the Wulff shape. This problem is well known in the literature; see, for 
instance, ref. 4 for the 2D nearest neighbor ferromagnetic Ising model and 
ref. 5 for the .Ginzburg-Landau functional. 
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Our techniques exploit the F-convergence result proved in ref. 1 con- 
cerning the nonlocal free energy functionals that arise in the continuum 
limit from Gibbs measures with Kac potentials. The analysis of the con- 
strained minima is then based on a equicoercivity condition, Lemma 2.3, 
which implies convergence by subsequences. 

The outline of the paper is the following: in Section 2 we state the 
variational problem and in Section 3 its relation with the spin systems, and 
in Section 4 we prove Lemma 2.3. 

2. A VARIATIONAL PROBLEM WITH 
NONLOCAL FUNCTIONALS 

We start with an abstract formulation of the variational problem that 
we then specialize to the actual case of interest. In the next section we will 
explain its physical origin, outlining the relation with the spin system. 

Let X be a metric space, e > 0, F, and F functions defined on X with 
values in [0, + ~ ], c(X) a subset of all the continuous functions g: X--* R 
such that g-~(0) :/: ~ .  

D e f i n i t i o n  2.1. We say that {F,} F-converges to F under the con- 
straint g if 

lim l iminf  inf F~(u)= lim l imsup inf F , (u )=  inf F(u) (2.1) 
t ~ 0  + ~ 0  + I g ( , t ) [ < (  ( 4 0  + ~ 0  + [ g ( . ) l < ~  g(u)=O 

We also say that {F~} F-converges to F under the set of constraints c(X) 
if it F-converges for any g e c(X). 

If the set c(X) consists of all the functions g,,, v e X, where 

g,,(u) = ~(u, v) (2.2) 

and ~ is the distance on X, then the first two terms in (2.1) are respectively 
the usual F-lower and upper limits of the sequence {F~} at the point v, and 
F is the F-limit of {F~} on 2 (see Chapter 3 in ref. 3). 

In our applications X =  L' ( ,~ ;  E -  1, 1]), where J -  is the unit torus in 
•a. The elements u of Lm(~--; E - 1 ,  1]) are interpreted as "magnetization 
profiles" and u(r) as the magnetization density at the "macroscopic space 
point" r �9 #-. The number t > 0, which for simplicity we choose so that 
e-m �9 I~, is a scaling parameter which represents the ratio between macro- 
scopic and microscopic units; the limit e ~  0 + thus corresponds to the 
macroscopic limit. The quantity F,(u) rsee (2.4) below] is the (excess) 
free energy of the magnetization profile u corresponding to the scaling 
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parameter e. The functions g are the physical observables; thus, fixing 
[g(u)[ < ( amounts to preparing the system in a state where the observable 
g has value 0 with "tolerance" (. The state that will then be selected by the 
system in such a condition is the one that minimizes the free energy under 
the given constraint. 

Using (2.1) with g=g~,, v~L~(3-; [ - 1 ,  1]) [see (2.2)], we obtain the 
limit free energy F(v) of the profile v. Observe that in general F(v) will be 
different from the limit of the free energies F~(v) since F-convergence and 
pointwise convergence of {F~} do not necessarily coincide. Physically this 
is due to the fact that the same macroscopic state v can be realized in 
many, slightly different (with tolerance () microscopic states, differences 
that in macroscopic units vanish when e ~ 0 +. However, for each e > 0 the 
system "is free to look around" and choose among all these states the one 
with the lowest free energy. This effect may persist in the macroscopic limit, 
no matter how precise is the preparation of the system (i.e., ~ small). 

In interface problems a typical constraint is 

g(u):=f~_dru(r) -a ,  a e [ - 1 ,  1] (2.3) 

and the associated variational problem consists in finding the minimal free 
energy at the given magnetization a (with tolerance (), which is a Wulff- 
type problem. In d-- 2 Ising nearest neighbor interactions this problem was 
first solved in ref. 4; the result has been extended in several directions. For 
Ginzburg-Landau functionals the Wulff problem has been solved in ref. 6; 
see also ref. 5. 

The free energy functions F~ in which we are interested read 

[ 1 f t ( u ) : = ~  -1 f~_dl'(-o(fd(r))Jc~II~.xydrdrt. . . J , ( l r - r ' [ )  u(r)-u(r')e - (2.4) 

where u e L~(~--; [ -  1, 1 ]), and o9 is a double-well potential defined by 

co(s) :=f(s)-f(mp), s e  [ - 1 ,  1] 

with mp the positive solution of the mean-field equation 

ml~ = tanh(flmt~) 

and f the free energy density. Precisely 

1 ") f (s)  := -- ~s- --fl-mi(s) 

(2.5) 

(2.6) 

(2.7) 
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where fl > 1 is the inverse temperature and i is the entropy density, i.e., 

Finally 

. -  ~- log ----~-- log (2.8) 

JAlrl) : = e - ' V ( e - '  Irl) (2.9) 

with J([r[) (the interaction strength) a nonnegative ~g~'~ function of r e  R a, 
supported in the unit ball and such that 

f drJ(lrl) = 1 (2.10) 
d 

The expression (2.4) recalls the Ginzburg-Landau free energy func- 
tional, of which it is a nonlocal version; see the end of Section 2 and the 
beginning of Section 4 in ref. 1. The F-convergence of the Ginzburg- 
Landau functionals has been proved in ref. 5, while in ref. 1 it is shown that 
the functions F~. in (2.4) F-converge to F:=spP on BV(Y;  { +rap} ), where 
B V ( J ;  { _+m/~} ) is the space of functions of bounded variations on Y with 
values _+rap. Here sp > 0 is the surface tension at the inverse temperature 
fl, and P(v) is the generalized area of the boundary of the set {v(r)=m/j}. 
This shows the validity of (2.1) for all g,, with veBV(~--; {_+rap}); the 
extension to all g is proved in the next theorem. We first extend F by 
setting 

F(v)" ~spP(v) for v e B V ( 3 - ; { + m p } )  
"= L + co otherwise on L ' ( Y ;  [ - I, 1 ] ) 

and then state the main result in this paper: 

T h e o r e m  2.2. Let X=L'( .~- ;  [ - I ,  1]). The sequence {F~} defined 
in (2.4) F-converges to F under any constraint, namely (2.1) holds for all 
continuous functions g: X---, ~ such that g - ' ( 0 ) #  ~ .  

In particular, Theorem 2.2 proves that {F~} F-converges to F on the 
whole L'(~-;  [ - 1 ,  1]). Thus i f u ~ u  as e-~O + and uEL~(J-; [--1,  1]) \  
BV( ~ { +_m/j} ), then F~(u~) ~ + oo. 

The proof of Theorem 2.2 is based on the following compactness con- 
dition, which is the main technical estimate in the paper and will be proved 
in Section 4: 

L e m m a  2.3. Let {u~} be a sequence in L~(J-; [ - 1 ,  1]) such that 
sup~ FAun)< + o0. Then {u~} admits a subsequence converging in L '(~-)  
to a function in BV(J-; { +rap} ). 
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Proof of Theorem 2.2. Set X:=L~(3- ;  [ - 1 ,  1]), X' : = B V ( J ;  
{ +rap}). Fix gec(X); given e > 0  and ( > 0 ,  let 

/~(() := inf F~(u), I(() := inf F(u), I(0) := inf F(u) 
Ig(u l l  <Z2 Ig(u)[  < ~  g(u)  = 0  

We first consider the case I(0) < + oe. We shall prove that 

I(2() ~< lim inf/~(() ~< lim sup I.(() ~< I(() 
~ 0  + / : ~ 0  + 

(2.11) 

Given any 6 > 0, there is use  X so that 

Ig(ua)l < ( ,  F(u6)<I(()+~ (2.12) 

Since I(() ~< I(0) < + Go, we get P(u '~) < + co, hence u s e X'. 
As {F.} F-converges to F on X', there is a sequence {u.} such that 

u.--, u s in X and F~(u.)---, F(u ~) as e ~ 0 § By the continuity of g, if e >  0 
is small enough, we have Ig(u.)l < (, hence I~(()~< F.(u~). By (2.12) we then 
have 

lim sup I.(() ~ lim F~(u.) = F(u ~) <~ I(() + 6 
e ~ O  + e ~ O  + 

and letting ~--* 0, we deduce that 

lim sup I.(~) ~< I(~) (2.13) 
~ ; ~ 0  + 

Let now {u.} be a sequence in X such that Ig(u.)l < (  and 

l iminfI . ( f f )= lim F.(u~) (2.14) 
l : ~ 0  + g ~ O  + 

As I(~)~<I(0)< +co ,  by (2.13) it follows that l im,_o+F, (u , )<  +co.  
Using Lemma 2.3, there exist a function u e X '  and a subsequence {ue} 
of {u~} converging to u in L'(Y-). But {F,} F-converges to F on 
BV(Y; { _+rap}) and Ig(u)[ <~( because g is continuous, hence 

lim infI.(()  = lim F., (u.,) >t F(u) >1 I(2() 
~ 0  + c s ~ O +  

(2.15) 

The inequalities in (2.11) follow from (2.13) and (2.15). 
Moreover, 

lim sup I(() ~< I(0) 
( ~ 0  + 

822/84/5-6-30 
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and using the facts that F is coercive and g is continuous, one can check 
that 

lim inf I(() >1 I(0) 
( ~ 0  + 

Hence, passing to the limit as ( ~ 0  + in (2.11), we deduce (2.1). 
It remains to prove (2.1) when I (0)=  + oo. We need to prove that 

lira l iminf  inf F~(u)= + ~  (2.16) 
( ~ 0  + e ~ O  + I g ( u ) l < (  

Suppose by contradiction that there is a sequence {u~} in X such that 

lim g(u~)=0, supF~(u~)< + ~  (2.17) 

By Lemma 2.3, {u~} admits a subsequence converging (in X) to ueX', so 
that F(u) < + ~ .  As g is continuous, we have g(u) = 0, hence I(0) < + ~ .  
Theorem 2.2 is proved. | 

The proof of Theorem 2.2 applies to more general situations, as in the 
case in which X' is a proper subset of the metric space X, F - ~ ( +  c~)= 
X\X', { F~} F-converges to F on X', and the following conditions hold: if 
t~ [0 ,  + ~ )  and either u~{F<~t} or u~e{F~<~t} for any e > 0 ,  then {u~} 
admits a subsequence converging in X to some element of X'. 

3. APPLICATIONS TO ISING SYSTEMS WITH 
KAC POTENTIALS 

We start with some notation (Definition 3.1 below) that will be useful 
also in Section 4, then we will recall from ref. 1 the basic definitions of Ising 
systems with (ferromagnetic) Kac potentials and state without proofs the 
analogue of Theorem 2.2 at the spin level. 

Definition 3.1. Partitions of •a. For any k ~ Z ,  .~k~ denotes the 
partition of ~d into the d-dimensional cubes 

{ r= ( r l  ..... ra) E~d:2-kxi<~ri<2-k(xi+l);xi~-, i = 1  ..... d} (3.1) 

The atoms of 22 tk~ are denoted by C (k). Here C~k~(r) is the unique atom of 
.~k~ that contains the point r. We let ~lk) be the map from L~ d) into 
itself defined by 

1 
7zr := [-~-~ Jc['~,lrl dr' f(r') (3.2) 
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A function f6L~ d) is .~(k~-measurable if f=n(k f  and a set A c R d is 
~d~k~-measurable if its characteristic function IA is ~2tk)-measurable. 

Def in i t ion  3.2. Spin configurations. We denote by ), a parameter 
that takes values in {2 -k, k e  N}. Then a t, is an Ising spin configuration 
with mesh ),=2-*,', kt, s N ,  if ayeL~(Rd;{+l}) and if a t, is 2~ (kz)- 
measurable. 

Let ~e(0 ,  (d+  l ) - l ) ,  e - t  := [7 -~] ( [a]  denoting the integer part of 
a e R ) ,  ~ the torus in R d of period e -~. A spin configuration on .~, is an 
Ising spin configuration a t, with mesh y periodic with period e - ' .  Hereafter 
a t, will always denote a spin configuration on ~ .  

Def in i t ion  3.3. Energy. Let A be a bounded measurable region of 
~d and m~L'(A; [ - 1 ,  1]). The energy o f m  in A is defined as 

H ( m ; A ) : = - � 8 9  drip, dr'J(lr-r'[)m(r)m(r' ) (3.3) 

IfA is a torus, then Ir-r'l in (3.3) is the distance between r and r' in the 
torus. 

Def in i t ion  3.4. Gibbs measures. The Gibbs measure on the torus 
,~, with Kac potential J(Irl), scaling parameter y, and inverse temperature 
[]> 1, is the probability It/j, r,~ on the space of spin configurations on .Y~ 
with mesh y defined as 

where 

1 - l i t '  - ' i l l (  ,';;,; .9-c ) 
~tp. r. &rr) := Zp, y, ~ e (3.4) 

Z/j. ~.. ~ := ~ e -/Jr-am~ ~-~) (3.5) 
o'1, 

is the partition function. 

See ref. 1 for a discussion on the above definitions and their relation 
to more usual formulations of the model. 

Given meLt(~-~,; [ - 1 , 1 ] )  and e > 0 ,  we denote by m~eLl(3-;  
[ -  1, 1 ]), J the  unit torus in R a, the function 

m~(r) := m(~-tr)  (3.6) 

Let g be a constraint on X : = L ' ( • ;  [ - 1 ,  1]), { > 0 ,  and k e N .  We want 
to study the behavior of 

19,,..,({ Ig((~'*)cL, L)l <4}) (3.7) 
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as y ~ 0 +, e ~ 0 +, and then ( ~  0 +. In fact (3.7) is the probability that the 
observed value of g is 0 with tolerance ( when g is computed on the block 
spin configuration nck)a r. 

We omit, for reasons of space, the proof (consequence of Theorem 2.2 
and of the analysis in Section 3 of ref. 1 ) that if e - ~ ,~ Y-~ with ~ > 0 small 
enough (see Definition 2.1e in ref. 1), then 

lim lim inf yae a- ~ In Pt~. ~,..( { I g(M.n~kla~')] < (} )  
r  + y ~ O  + 

= lim lira sup y% d- i In/~a, ~,. ,( { Ig(M, ntk'a~')[ < (}) 
r  + y ~ 0  + 

= - f l s p  inf P(u) (3.8) 
g{u) = 0  

4. PROOF OF L E M M A  2.3 

Given e>O and meL~ [ - 1 ,  1]), we call 

m (1) : =  mp 
on {m>~ma} 

on { m ~  --ma} 

elsewhere on 

(4.1) 

Recalling Definition 3.1, we define the function ~b =~b,,,.k.r m e L ~ ( ~ ;  
[ - -mp,  rap]), k e N + ,  ~>0 ,  as 

i-- if rdk)m(r) >>. ma-- ( 
~b(r) := 1 if n~k)m(r)~ - m p + ~  

otherwise 

(4.2) 

Finally, given m e L ~ 1 7 6  [ - -1 ,  1]), k e N + ,  and ( > 0 ,  we define the 
function m + e L~176 { +rap}) by setting r := q}m"', k. r and 

mp on {~b ~>0} (4.3) 
m§ := - m p  on {r = - 1} 

We also denote by P(u; ~-:) the perimeter functional for u EBV(~;  
{ i m p } )  and define ~ ( m ;  G ) : = e l - a F , ( ( m ) , ) ,  see (3.6). 

P r o p o s i t i o n  4.1. There are k e N +  and ( > 0  and for any t > 0  
there is c > 0  so that the following holds. Given e > 0 ,  if m e L ~ ( ~ ;  
[ -  1, 1]) is such that o~(m, 9"s te I -a, then m + as defined in (4.3) satisfies 
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P(m+; 9~=)~< co~(m; ~ )  (4.4) 

I~_ dr Im+(r ) -m(r )12<~c~(m;  ~ )  (4.5) 

Proof. Let k e N + ,  C>0,  e > 0 ,  meL~(~-~;  [ - - 1 , 1 ] ) ,  and r  
r162 as in (4.2). Let 0 + be the boundary (in ~ )  of the set {m + =mp}. 
By the definition of r 0 + is made up of faces of elements of .s We can 
then write 0 + as the union of 0 +,  ieI ,  I a finite index set, where each 0 + 
is one of the faces of some C i e .~k), C i chosen in the following way: either 
r  on C i or 0 + =OCic~OC for some C e ~  ~k), where r  1 on C i and 
r = - 1 on C, or vice versa. 

For  any C" we denote by D ~ the cube of side 4 with same center as C". 
In the proof of Theorem 2.3 of ref. 1 it is shown that if k is large enough 
and ( small enough, then there is c > 0 (independent of e) so that for all 
i e I  

lOCi[ <~ c~(m(]l; D i) (4.6) 

Hence 

P(m+; 9"~,)= l0 + ] = y '  IOCil <c ~ ~-(rn(2'; D') 
i E l  i E l  

(4.7) 

Observing that if A and B are disjoint sets in Y-~, then 

~ ( . ;  A wB)~>~(.;  A ) + ~ ( . ;  B) 

we would get (4.4) from (4.7) if the D i were disjoint. Since D i n  D J=  ~ if 
the distance between C i and C j is larger than 4, the number of disjoint D i 
is at least (5 .2  k)-d times the number of cubes C i. Therefore 

P(m+; 9~=) <~c2Ik+3)a~(m(2); ~'~) <~c2(k+3)d~(m; ~'~) (4.8) 

which proves (4.4). 
Let us prove (4.5). We first assume that m e L~-(~-~=; [ - r a p ,  mp]), so 

that m=m(]).. 

I~= d," Im +(r) - m(r)l 2 

= ~ I dr [m+( r ) - r e ( r ) [  2 =: Z o + Z i  (4.9) 
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where Z'o is the sum over all C _  {~b=O} and Z' 1 is the sum over all the 
others. If C ~  {~k =0} ,  by (4.6) we have for a suitable constant c > 0 

ICI c~(mlll; D) fcdr Im+(r)-m(r)12<~4 [CJ ~< 4 [ - -~  

ICI c~(m; D) (4.10) 
C 

so that for some new constant c > 0 

Zo <~ c.~(m; ~)  (4.11 ) 

Assume now that C _  {q~ 4=0}; we shall suppose that C _  {~b = 1}, the other 
case being similar. Since the function c0(s), s e ~, is a symmetric double- 
well function with two quadratic minima at s = + mp, given ( e  (0, 3m~/2), 
there is c > 0 so that 

(s-mp)-,~co~(s) for all se[-mp+(,mp] (4.12) 

We write C =  C + w C2, 

C + := { re  C: m(r)>l - r a p + ( }  

C2 := C\C + = { re  C: m(r) < - m p +  (} 

Recalling that m + =mp on C and using (4.12), we obtain 

fc* dr I r a ( r ) - m + ( r ) [ 2 ~  c fc+ dr [f(m(r))-f(mp)] ~< c,~(m; D) (4.13) 

(this is the only place where the L2-norm of m - m  + is essential). It thus 
remains to estimate the integral over C2, where, however, an inequality like 
the first one in (4.13) cannot hold in general [as when re ( r )=  - r a p  for 
r e  C2; then [m(r)-m+(r)[ =2mp in C2, while co(m(r))=0]. We will then 
use for the bound in C2 the second term in the functional ~ .  To this end 
we define 

Cl :={reC:m(r)>~mp-2(}, Co:=C\(CtuC2) (4.14) 

We have C~ c C + so that C, c~ C2 = ~ .  Since ~ = 1 on C, the average of 
m over C is bounded from below by m p - ( .  Hence 
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so that 

(mp-~)  ICI = (rap-C)(IC01 + IC, l+  IC,_ I) 

<~ ~codr m(r) + fc dr m(r) + Ic2dr m(r) 

~< (rnp- 2() ICol +rap IC�91 I + ( - m p + r  IC,_l 

2 IC21 ( m e -  ~) ~< - I C 0 l  ~'+ I f ,  I ~ <  I f ,  I~ 

Hence, for ~ > 0  sufficiently small, we have IC2l~[Cl[ .  By the 
isomorphism of Lebesgue measures] 7~ there is a measurable subset A~ of 
C, and a one-to-one map ~b from C2 onto A~ which preserves the Lebesgue 
measure. For k large enough there are a cube C'e.~k~, C'cD\C, and 
a > 0  such that J(lr-r'[)>~a for all r e  C and r ' e  C'. We can then bound 

o~(m; D ) > ~  dr' dr [ m ( r ' ) - m ( r ) ]  2 
I t .~C2 

(4.15) 

We write the integral over r e A 1 W C 2 as 

c, dr { [m(r') - re(r)] ~ + [m(r') -,n(~b(r))] 2} 

1 >~-2 fc d r [m(ip(r))_m(r) ]2 >~ IC_,l (2rap_ 3()2 
. - 5 - -  

where we have used the elementary inequality 

and the facts that r ~ C2 implies re(r) < - mp+ ( and ~k(r) ~ A 1 c C~ implies 
m(~k(r)) >~mp-2~. Using (4.15), we then have 

a (2ma-3( )2  IC21 
o~(m; D) > ~  IC'l 2 

>~ 4 2-~a(2mp- 3~)2 Im(r)-ma[24 

Hence, for a suitable constant c > 0, 

Ic,. dr Ira(r) -mp['- ~ co~(m; D) 
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and this, toghether with (4.13), yields 

fcdr Im + (r) - m(r)l 2 ~ c~(m; D) 

so that for a new constant c > 0 

Z I <~c~(m; ~ )  (4.16) 

Inequalities (4.16) and (4.11) prove (4.5) for m = rn ~'1. When m :~ m Ill we 
write, recalling (4.1), 

1 I ~  dr Im +(r)-m(r)l"-<~ [~_ dr [m+(r)-m"~(r)[ 2 

+ !~_ dr [m(r)-n{l~(r)[ 2 

By (4.5) the first integral is bounded by c~(m~2~; ~) ,  hence by c~(m; ~) .  
By (4.12) the second integral is also bounded by c~(m; ~ )  and Proposi- 
tion 4.1 is proved, l 

Proof of I.emma 2.3. Let t > 0 be such that F~(u~) <~ t for any e > 0. 
We reformulate Proposition 4.1 in terms of functions defined on ,~.. Set 
u := (m)~ [ i.e., u(r) = re(e-~r), r ~ ~--] and u + := (m)~ + . Recalling that P is 
the perimeter functional on BV(J-; { +mp}), by Proposition 4.1 we have 
[writing lul, for the L~(.~-)-norm of u] 

P(u:)<~ct, lu:-u=l,<~f drlu~*(r)-uAr)lZ<~ctc (4.17) 

Since lu:[,~<c, the first inequality in (4.17) implies that there are 
ueBV(~-;{+m/j})  and a subsequence {u~} of {u~ +} converging to u in 
L~(J) .  Finally, thanks to the last inequality in (4.17), we have 

lim lu~,-ul~<~ lim (lu~,-U~ll+lU~+-ul~)=O (4.18) 
c ' ~ O  + t ; ' ~ O  + 

and Lemma 2.3 is proved. II 
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